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Main theorems

Theorem (Ge-Meng-W.-Yang, 2024)
Let M = Ks(p, q) be the manifold obtained by S3 doing p/q
Dehn-Surgery along the twist knot Ks. Then there exists a N
(N = 10 is enough.), so that if |p|, |q|, |s| > N,

lim
r→∞,r odd

4π
r log RTr(Ks(p, q))

=Vol(Ks(p, q)) +
√
−1CS(Ks(p, q)) (mod

√
−1π2Z),



Main theorems

Due to the realtionship between Reshetikhin-Turaev invariants and
Turaev-Viro invariants,
Theorem
For a closed,oriented 3-manifolds M

TVr(M) = 2b2(M)−b0(M)+2|RTr(M)|2 ∀r

where bi(M) is the i-th Z2 betti number of M.

we can directly obtain

lim
r→∞,r odd

2π
r log TVr(Ks(p, q)) = Vol(Ks(p, q))
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Dehn Surgery

Definition (Dehn Filling)
Along the boundary torus T of S3\K, we glue in one solid torus H
by a homeomorphism that kills curve pmT + qlT on T and meridian
m on ∂H, This process is called Dehn filling. mT, lT are the
meridian and longitude that generate H1(∂(S3\K),Z). And
p/q ∈ Q ∪ {∞} is called Dehn coefficient.
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Knots in S3

Definition (Knot in S3)
A knot is a smooth embedding of S1 into S3.



Knot diagrams

Example



Knot invariants



Quantum invariants

Idea of quantum groups is originated from quantum integrable
system(QISM). In 1981 Kulish-Reshetikhin gave the first example
of quantum groups and then in 1986 Drinfeld-Jimbo formalized
the above idea to the general definition of quantum groups.

Steps for constructing invariants from quantum groups:
▶ Let Uq(g) be the quantum universal enveloping algebra of a

finite dimensional complex semi-simple Lie algebra g

▶ For each knot component, we associate it an irreducible
representation V of Uq(g)

▶ The quantum invariants can be obtained by taking the
quantum trace of endomorphism.
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Quantum invariants

Quantum Invariants Quantum Groups
(colored) Jones polynomial Uq(sl2)
(colored) HOMFLY-PT polynomial Uq(slN) ( N ≥ 2)
(colored) Kauffman polynomial Uq(so2N+1)
Chern-Simons invariants Uq(slN)
Reshetikhin-Turae invariants Uq(g)
Turaev-Viro invariants Uq(sl2) or Uq(so3)

The colored version of invariants can be seen as an extension from
the fundamental representation of quantum groups to any
irreducible representation of quantum groups.



Knot Classification

Theorem (Thurston)
A knot in S3 is hyperbolic if and only if it is not a torus knot or a
satellite knot.

Claim: The vast majority of knots are hyperbolic. Among all prime
knots with crossing ≤ 16, there are 13 torus knots, 20 satellite
knots and 1701903 hyperbolic knots.
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Mostow–Prasad Rigidity

Hyperbolic volume is a invariant of hyperbolic knots by Mostow
Rigidity.
Theorem (Mostow Rigidity Theorem)
For n ≥ 3 , any two complete, finite-volume hyperbolic manifolds
of dimension n with isomorphic fundamental groups are isometric.

For non-hyperbolic knots, we use Gromov norm instead of its
hyperbolic volume.



Mostow–Prasad Rigidity

Hyperbolic volume is a invariant of hyperbolic knots by Mostow
Rigidity.
Theorem (Mostow Rigidity Theorem)
For n ≥ 3 , any two complete, finite-volume hyperbolic manifolds
of dimension n with isomorphic fundamental groups are isometric.

For non-hyperbolic knots, we use Gromov norm instead of its
hyperbolic volume.



Gromov norm

Definition (Jaco-Shalen-Johannson decomposition)
Let K be a knot. Then S3\K can be uniquely decomposed into
hyperbolic pieces and Seifert fibered pieces by a system of essential
tori

S3\K =
(∪

Hi
)
∪
(∪

Ej
)

with Hi hyperbolic and Ej Seifert-fibered.

Definition (Gromov norm)
The Gromov norm Vol(S3\K) is defined as

Vol(S3\K) =
∑

i
Vol(Hi)
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JSJ-decomposition

Example
The JSJ decomposition of the (2,1)-cable of the figure-eight knot



Volume

Definition (dilogarithm function)

Li2(z) = −
∫ z

0

log(1 − t)
t dt

Definition (Bloch-Wigner function)

D2(z) = =(Li2(z)) + log |z|= log(1 − z), if z ∈ C\{0, 1}
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Volume

Proposition
For a ideal tetrahedron T with shape z ∈ H, Vol(T) = D2(z)

After an geometric ideal triangulation of a cusped hyperbolic
3-manifold M, we have Vol(M) =

∑
T
Vol(T).
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Chern-Simons

The Chern-Simons invariant is a topological invariant associated
with 3-manifolds, defined using a connection A on a principal
G-bundle over the manifold.
▶ Defined for closed, oriented 3-dimensional manifolds.
▶ Defined via a connection 1-form A on a principal G-bundle,

where G is a Lie group (often G = SU(2) or G = SO(3)).
▶ The Chern-Simons invariant depends on the choice of the

connection, but moduli space analysis shows that its variation
gives a topological invariant for flat connections.



Chern-Simons

Definition (Chern-Simons)
Let M be a closed, oriented 3-manifold, and A be a connection
1-form on a principal G-bundle over M. The Chern-Simons
invariant CS(A) is defined as:

CS(A) = 1
4π

∫
M

Tr
(

A ∧ dA +
2
3A ∧ A ∧ A

)
, (1)

where Tr is the trace over the Lie algebra g of G.
This integral represents a 3-dimensional characteristic class,
derived from the Chern-Weil theory, and captures topological
information about the 3-manifold.



Chern-Simons

Under a gauge transformation g : M → G, the connection
transforms as A 7→ Ag = g−1Ag + g−1dg. The Chern-Simons
invariant transforms as:

CS(Ag) = CS(A) + 2πn,

where n ∈ Z is an integer that depends on the winding number of
the gauge transformation. This integer ambiguity reflects the fact
that the Chern-Simons functional is not gauge-invariant, but its
variation is.

Thus, the Chern-Simons invariant mod 2π defines a well-defined
topological invariant.
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KMM Volume Conjecture

Volume conjecture: quantum topology ⇔ hyperbolic geometry.

Conjecture (Kashaev 1997; Murakami-Murakami 2001)
For any hyperbolic knot K in S3

2π lim
N→∞

log |JN(K; e
2π

√
−1

N )|
N = Vol(S3\K)

Conjecture (Complexification)
For any hyperbolic knot K in S3

2π lim
N→∞

log JN(K; e
2π

√
−1

N )

N = VolC(S3\K)

where VolC(S3\K) = Vol(S3\K)+
√
−1CS(S3\K) (mod

√
−1π2Z).
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Some Progresses of KMM Volume Conjecture

1. Kashaev and Yokota: 52

2. Ohtsuki, Yokota and Takata: 6i, 7i, 86, 812

3. Garoufalidis and Le: Borromean rings
4. Kashaev and Tirkkonen: Torus knots
5. Hikami: torus links of type (2, 2m)

6. Zheng: Whitehead doubles of torus knots, Twisted Whitehead
links

7. van der Veen: knots and links with volume 0, Whitehead
chains

8. Yamazaki and Yokota: a satellite link around the figure-eight
knot with pattern the Whitehead link

9. Chen and Zhu: twist knots Kp with p ≥ 6, 2023, arxiv.



Framed link

Framed link can be seen as a “thickening” of each component of
the link into a ribbon around the curve.



Reshetikin-Turaev and Turaev-Viro invariants

Reshetikhin-Turaev invariants are a family of quantum invariants
of framed links which can be constructed from representations of
ribbon Hopf algebra. Nicolai Reshetikhin and Vladimir Turaev
discovered these invariants in 1991 to rigorously realize Witten’s
proposed invariants from quantum field theory(QFT).

Such invariants of framed links also give rise to invariants of
3-manifolds via the integral Dehn surgery construction.

For manifolds possibly with boundarys: Turaev-Viro invariants.
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Chen-Yang Volume Conjecture

Conjecture (Chen-Yang: RT, 2018, Quantum Topol.)
For any hyperbolic closed orientable 3-manifold M

4π lim
r→∞,r is odd

logRTr(M; q(2) = e 2
√

−1π
r )

r = VolC(M)

where VolC(M) = Vol(M) +
√
−1CS(M) (mod

√
−1π2Z).

Conjecture (Chen-Yang: TV, 2018, Quantum Topol.)
For any hyperbolic orientable 3-manifold M, either closed, with
cusps, or compact with totally geodesic boundary

2π lim
r→∞,r is odd

logTVr(M; q(2)) = e 2
√

−1π
r )

r = Vol(M)
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Recent Progress of Chen-Yang Volume Conjecture
Some Manifolds for which the Volume Conjecture is proved:

1. (Algebr. Geom. Topol. 2018 )
Ohtsuki: Reshetikin-Turaev invariants of integral Dehn filled
manifolds along figure-eight knot

2. (arXiv 2020)
Wong-Yang: Reshetikin-Turaev invariants of rational Dehn
filled manifolds along figure-eight knot

3. (Quantum Topol. 2018)
Detcherry, Kalfagianni and Yang: (modified) Turaev-Viro
invariant of complements of 41 and Borromean ring

4. (J. Differential Geom. 2022)
Belletti, Detcherry, Kalfagianni and Yang: Turaev-Viro
invariant of fundamental shadow link in Mc

5. (arXiv 2024)
Chen-Zhu: Reshetikin-Turaev invariants of integer Dehn filled
manifolds along the twist knots
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Sketch of our Paper

1. We use the skein approach to calculate the RT invariants.
We convert Dehn surgery into integral surgery using
continued fractions. In the computation, we substitute the
cyclotomic expansion of the colored Jones polynomial.

2. We constructed a non-canonical ideal decomposition of the
Whitehead link complement. This decomposition corresponds
to the geometry of the potential function, but there is a
discrepancy in the Dehn coefficient. We effectively fix it using
the sister potential function we developed. Additionally, our
theory provides an analytical explanation for the Weeks‘
pairs of manifolds.

3. We observed a “big cancellation” between the Fourier
coefficients. And we use the saddle point method to estimate
the Fourier coefficients.
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Skein approach of RT

The Kauffman bracket skein module Kr(A × [0, 1]) is a C-module
generated by framed link diagrams in A × [0, 1] modulo the
following two relations:

1. Kauffman Bracket Skein Relation:

= + eπ
√

−1
re−π

√
−1

r

2. Framing Relation:

L ∪© =
(
−e

2π
√

−1
r − e−

2π
√

−1
r

)
L
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Skein approach of RT

By sending the empty link to 1, we can define an isomorphism

< >: Kr(A × [0, 1]) → C

Let < l1, l2, ..., lk >D(L) be the complex number obtained by cabling
l1, ..., lk ∈ Kr(A × [0, 1]) along k ordered components of D(L).

On Kr(A × [0, 1]), there is a commutative multiplication induced
by the juxtaposition of annulus A, and as a C-algebra

Kr(A × [0, 1]) ∼= C[z]

where z is the core curve of A.
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Skein approach of RT

Let en(z) be the n-th Chebyshev polynomial (i.e., the Jones-Wenzl
idempotent of Temperley-Lieb algebra) defined by the recursive
relation

en(z) = zen−1(z)− en−2(z)

where e0(z) = 1 and e1(z) = z.

The Kirby coloring ωr ∈ Kr(A × [0, 1]) is then defined by

ωr =
r−2∑
n=0

(−1)n[n + 1]en

where [n] is the quantum integer defined by

[n] = e 2nπ
√

−1
r − e− 2nπ

√
−1

r

e 2π
√

−1
r − e− 2π

√
−1

r
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Skein approach of RT

ML: surgering S3 along a framed link L;

D(L): a standard diagram of L (the blackboard framing of D(L)
coincides with the framing of L);
σ(L): the signature of the linking matrix of L;

U+: the diagram of the unknot with framing 1; µr =
sin 2π

r√r .

Definition
The r-th Reshetikhin-Turaev invariant of ML is defined as

RTr(ML) = µr 〈µrωr, . . . , µrωr〉D(L) 〈µrωr〉−σ(L)
U+

.
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Reshetikhin-Turaev invariants

RTr(ML) is an invariant under Kirby moves (blow-up/down, handle
slide).

ML1 , ML2 are homeomorphic if and only if L1 and L2 are related by
Kirby moves.
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Lickorish-Wallace Theorem

Theorem (Lickorish-Wallace)
Any closed, orientable, connected 3-manifold can be obtained by
integral Dehn surgery along a link in S3.

Theorem (Generate to cases with boundary)
Any compact, orientable, connected 3-manifold with boundary is
obtained as follows: pick L ∪ C ⊂ S3 where L is a link and C is a
1-complex; remove an open regular neighbourhood of C and
perform an integral surgery along L.
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Kirby calculus

Convert Dehn surgery into integral surgery



Continued fractions
The rational Dehn cofficient p/q can be expressed as a continued
fraction in the following manner:

p/q = ak −
1

ak−1 − 1
. . .− 1

a1

By continued fractions, we consider the closed manifold Ks(p, q)
obtained by S3 surgering along a framed link.

p’ full twists

a1 a2 ak-1... ak
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Calculation of RT Invariants

RTr(Ks(p, q)) =µr 〈µrωr, . . . , µrωr〉D(L) 〈µrωr〉−σ(L)
U+

=µk+1
r 〈µrωr〉−σ(L)

U+
〈ωr, ..., ωr〉D(L)

Let t = e 4π
√

−1
r , by direct computation

〈µrωr〉U+
= e(− 3

r −
r+1

4 )π
√
−1

〈ωr, . . . , ωr〉D(L) =

⟨ r−2∑
n=0

(−1)n[n + 1]en, . . . ,
r−2∑
n=0

(−1)n[n + 1]en

⟩
D(L)

=
r−2∑

m1,...,mk=0
(−1)mk+

∑k
i=1 aimi t

∑k
i=1

aimi(mi+2)
4 [m1 + 1]

k−1∏
i=1

[(mi + 1)(mi+1 + 1)]〈emk〉DKs



Calculation of RT Invariants

〈emk〉D(Ks) = (−1)mk [mk + 1]Jmk+1(Ks)

=(−1)mk [m + 1]
mk∑

k′=0

k′∑
l=0

(−1)lt
k′(k′+3)

4 +s′l(l+1)

{2l + 1}{k′}!
{k′ + l + 1}!{k′ − l}! .

k∏
i=1

{mk + 1 + i}{mk + 1 − i}

where {m} = tm/2 − t−m/2, {m}! =
∏m

k=1{k}, k′ =

The second equal sign holds because we substitute Masbum’s
cyclotomic expansion of the colored Jones polynomial Jmk+1(Ks)
for the twist knot.



Cyclotomic expansion

Theorem (Kazuo Habiro)
The colored Jones polynomial can be rewritten into such expansion

JN(K; q) =1 + H1(q){N}{N + 2}+ H2(q){N − 1}{N}{N + 2}{N + 3}
+ ...+ HN(q){1}{2}...{N}{N + 2}...{2N}{2N + 1}

where Hi(q) ∈ Z[q±], i = 1, 2, ...,N

Theorem (Masbum)
The colored Jones polynomial of twist knot Ks is given by

JN(Ks, q) =
∞∑

n=0
fKs,n

{N − n}{N − n + 1}...{N + n}
{N}



Poisson Summation Fomular

Definition (Poisson Summation Fomular)
Poisson summation Formula states that, for any function f in
Schwarz space,∑

(m1,...,mk)∈Zk

f (m1, . . . ,mk) =
∑

(n1,...,nk)∈Zk

f̂ (n1, . . . , nk)

where f̂ (n1, . . . , nk) =
∫
Rk f (x1, . . . , xk) e−

∑k
j=1 2π

√
−1njxj dx1 . . . dxk



Calculation of RT
Finally we have:

RTr(Ks(p, q)) = cr

|q|−1∑
s=0

∑
(m,n,l)∈Z3

f̌r(s,m, n, l) + o(e r
4π ·3.5)

where

f̌r(s,m, n, l) =
∫

D
g(s, x, y, z)e r

4πi V(x,y,z,s,m,n,l)dxdydz(1 + O(
1
r ))

and V is the potential function.

V(x, y, z, s,m, n, l) = Li2(e2i(y+x)) + Li2(e2i(y−x))

+Li2(e2i(−y+z)) + Li2(e2i(−y−z))− Li2(e−2iy)

−p + 2q
q x2 − 4y2 − (4p′ + 2)z2 + 2πk(s,m)x − 4πny

−2π(2l + 1)z − π2

2 + K(s)π2



The ”Big Cancellation”
Qingtao Chen and Shengmao Zhu found the”Big Cancellation”
of the Fourier terms . This cancellation also occurs in our case.
Proposition

f̌r(s,m, n, l) = (−1)p′+l · f̌r(s,m, n,−2p′ − 2 − l)



Twist Knots and Whitehead Link

It is easy to see that twist knot Ks can be considered as a
whitehead link getting (1,−s)-dehn surgery along one component.

s 0 1 −1 2 −2 ...

Ks 01 31 41 52 61 ...
Coefficient (1, 0) (1,−1) (1, 1) (1,−2) (1, 2) ...

Ks(p, q) ∼= W((p, q), (1,−s))



Thurston’s triangulation

A’
B

A

D

D’

C
C’

B’

According to Thurston’s book, Whitehead link’s complement in S3

can be canonically decomposited into 4 idea tetrahedra.



Thurston’s triangulation

The Whitehead link complement can be viewed as an ideal
octahedron with its faces glued together.

A

A’D’

C’

D C

BB’

Thurston’s triangulation: cut along the red line; Our triangulation:
blue line.



Our triangulation

A different approach to cut the octahedron into four tetrahedrons

�
B

�

C

��

A’�

B’

A

D ��

��

D’

C’ �
��

1

2

3

4



Our triangulation

Glue the four tetrahedrons in a new way

B

A
D

C’

�

�

��

��

��

��

2

D’
�

4

A’

B’

�

1

3

C

We remove an edge and add an edge with long solid arrow.



Our triangulation

We remove the red edge and add an blue edge. Now, this object
becomes an pentagonal bipyramid.

C

C’

��

�
��

�

�
�

��
��



Our triangulation
The ideal pentagonal bipyramid.

A

D

C

B

E F

��

C

�

� ��

��
C’

��

�
�

Connect AB, then we obtained an idea triangulation containing 5
ideal tetrahedra.



Our triangulation

A

B

C

D

E
F

y

x

y
w z

x

x
z

y
w

m2

l2

x’x’’
z’

z’’w’

w’’

y’ y’’

y’

y’’

w’ w’’

x’

x’’

z’z’’



The geometry of the critical points of V

Consider Thurston’s gluing equations of W(−p−4q,q),((1,s− 1
2 ))

H(m1)− (s − 1
2)H(l1) = 2πi

(−p − 4q)H(m2) + qH(l2) = 2πi
H(e1) = H(e2) = H(e3) = H(e4) = H(e5) = 2πi

and critical point equations of V+(x, y, z)

∂V+(x, y, z)
∂x =

∂V+(x, y, z)
∂y =

∂V+(x, y, z)
∂z = 0 (2)
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The geometry of the critical points of V

Proposition
The system of Thurston’s gluing equations of W((−p−4q,q),(1,s− 1

2 ))

is equivalent to the system of the critical point equations of
V+(x, y, z).

Question
How to fix the discrepancy in the Dehn coefficients?
W((−p − 4q, q), (1, s − 1

2)) instead of Ks(p, q) ∼= W((p, q), (1,−s))
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Hodgson, Meyerhoff and Weeks’ sister manifolds

Theorem (Hodgson, Meyerhoff, Weeks)
Let W be the Whitehead link complement, and p, q are relatively
prime integers. W(−p−4q,q),(1,s− 1

2 )
and W((p,q),(1,−s)) have equal

volumes and Chern-Simons invariants.(With some requirements for
Dehn coefficients)

Note that W(−p−4q,q),(1,s− 1
2 )

has a cone-angle of 4π, which is not a
normal hyperbolic manifold.
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Hodgson, Meyerhoff and Weeks’ sister manifolds

double 
cover

double 
cover

mirror 
image

 full turn 
on             component



Sister potential function W

Definition
W(x, y, z, s,m, n, l) = Li2(e2i(y+x)) + Li2(e2i(y−x)) + Li2(e2i(−y+z)) +
Li2(e2i(−y−z))− Li2(e−2iy) + p+2q

q x2 − 4y2 + 4(p′ − 1)z2 +

2πk(s,m)x − 4πny − 4πlz − π2
2 − K(s)π2

Theorem
The system of critical point equations of W(x, y, z, s+,m+, 0, l+) is
equivalent to the hyperbolic gluing equations of W((p, q), (1,−s)).

Theorem
▶ (x, y1, z) is the critical point of V ⇔(x, y2, z) is the critical

point of W;
▶ V(x, y1, z) + W(x, y2, z) = 0.
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Geometry of the Critical Points and Critical Value

Theorem (Yoshida, 1985, Invent. Math.)
√
−1Vol(M)− CS(M) = Φ(H(m1), ...H(mk))

−
k∑

i=1

H(m)H(l)
4 +

θi
√
−1H(γi)

4
(
mod

√
−1π2Z

)
where Φ is the function defined on the deformation space of
hyperbolic structures on S3\L parametrized by ui = H(mi)
characterized by


∂Φ(ui)

∂u =
H(l)

2 ,

Φ(0) =
√
−1

(
Vol

(
S3\L

)
+

√
−1CS

(
S3\L

)) (
mod

√
−1π2Z

)
.



Geometry of the Critical Points and Critical Value

Using the above Yoshida’s fomula, we obtain the critical value
V+(x0, y0, z0),
Proposition
Let Vol(Ks(p, q)) and CS(Ks(p, q)) are the hyperbolic volume and
the Chern-Simons invariant of Ks(p, q), Then we have

V+ (x0, y0, z0) =
√
−1(Vol(Ks(p, q))+

√
−1CS(Ks(p, q)))

(
modπ2Z

)
A similar conclusion can be drawn for V−(x, y, z).



Saddle point method

Theorem (Ohtsuki)
Let D be a region in Cn and let f, g be holomorphic functions on
D, S be an embedded real n-dimensional closed disk in D. If
(1) (c1, . . . , cn) ∈ S is a critical point of f in D;

(2) <(Hess(f)(c1, . . . , cn)) is negative definite,
then we have∫

S
g(z1, . . . , zn)erf(z1,...,zn)dz1 . . . dzn

=
(2π

r
) n

2 g(c1, . . . , cn)√
− detHess(f)(c1, . . . , cn)

erf(c1,...,cn)
(

1 + O
(1

r
))
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Estimates of the Fourier Cofficients
In orange region =(Hess(V)) is negative definite.

Figure: The region
=V(x, y, z) > 3.5

Figure: The region
=V(x, y + i=(y0), z) > 3.5



Estimates of the Fourier Cofficients

Estimating these Fourier coefficients using the saddle point
method, we have
Theorem
If the volume Vol(Ks(p, q)) corresponding to the coefficients
(p, q, s) is greater than 3.55, then we have:

h1,r(s+,−l+, 0, 0) + h1,r(s−,−l−, 0, 0)
+h1,r(s+,−l+, 0, 2) + h1,r(s−,−l−, 0, 2)

=4(−1)l+(
r

2π )
3a+(x0, y0, z0)e

4π
√
−1

r (V+(x0,y0,z0))(1 + O(
1
r ))

and
|h1,r(s, l, 0, n)| < O(e r

4π (Vol(Ks(p.q))−ε))

and
|h1,r(s, l,m, n)| < O(e r

4π (3)) m 6= 0



Asymptotics of the RT&TV Invariants

Theorem (Ge-Meng-W.-Yang, 2024)
Let M = Ks(p, q) be the manifold obtained by S3 doing p/q
Dehn-Surgery along the twist knot Ks. Then there exists a N
(N = 10 is enough.), so that if |p|, |q|, |s| > N,

RTr(Ks(p, q)) = CrIKs(p,q)e
r

4π Volc(Ks(p,q))(1 + O(
1
r ))

TVr(Ks(p, q)) = 2|IKs(p,q)|
2e r

2π Vol(Ks(p,q))(1 + O(
1
r ))

where |Cr| = 1 and IKs(p,q) is an invariant

Volc(Ks(p, q)) = Vol(Ks(p, q)) +
√
−1CS(Ks(p, q))(mod

√
−1π2Z)



Chen-Yang Volume Conjecture for the twist knot

Theorem (Ge-Meng-W.-Yang, 2024)
Let M = Ks(p, q) be the manifold obtained by S3 doing p/q
Dehn-Surgery along the twist knot Ks. Then there exists a N
(N = 10 is enough.), so that if |p|, |q|, |s| > N,

lim
r→∞,r odd

4π
r log RTr(Ks(p, q))

=Vol(Ks(p, q)) +
√
−1CS(Ks(p, q)) (mod

√
−1π2Z),



Bound for N

Question
Why we need |p|, |q|, |s| > N

Theorem (Materlli)
Dehn Fillings on Whitehead link yeilds a closed hyperbolic manifold
M = W(

p1
q1
, p2

q2
) unless one of the following holds

▶ p1
q1

or p2
q2

∈ {0, 1, 2, 3, 4,∞}.
▶ (p1

q1
, p2

q2
) ∈

{(−4, 1), (−3, 1), (−2,−2), (−2,−1), (3
2 , 5), (

4
3 , 5), (

5
2 ,

7
2)} up

to permutation.

We need to make sure there is a solution to the hyperbolic gluing
equation with Dehn cofficients (p, q), (1,−s) and
(−4p − q, q), (1, s − 1/2).



Bound for N

Question
Why we need |p|, |q|, |s| > N

Theorem (Materlli)
Dehn Fillings on Whitehead link yeilds a closed hyperbolic manifold
M = W(

p1
q1
, p2

q2
) unless one of the following holds

▶ p1
q1

or p2
q2

∈ {0, 1, 2, 3, 4,∞}.
▶ (p1

q1
, p2

q2
) ∈

{(−4, 1), (−3, 1), (−2,−2), (−2,−1), (3
2 , 5), (

4
3 , 5), (

5
2 ,

7
2)} up

to permutation.

We need to make sure there is a solution to the hyperbolic gluing
equation with Dehn cofficients (p, q), (1,−s) and
(−4p − q, q), (1, s − 1/2).



Bound for N

Question
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We need to make sure there is a solution to the hyperbolic gluing
equation with Dehn cofficients (p, q), (1,−s) and
(−4p − q, q), (1, s − 1/2).



Bound for N

In our estimation we need to ensure that the Vol(Ks(p, q)) > 3.55.
And N = 10 is enough.
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An interesting lemma

Lemma
Suppose

z⃗ =

z1
...

zn

 ∈ Cn, r⃗ = (r1, · · · , rm) ∈ Rm, L =

 l⃗1
...

l⃗m

 ∈ Rm×n, p is a

n-variables real polynomial with degree≤ 2 and

f(⃗z) = r⃗

Li2(eil⃗1z⃗)
...

Li2(eil⃗mz⃗)

+ p(⃗z)



An interesting lemma

then we have

=f(⃗z) = r⃗

D2(eil⃗1z⃗)
...

D2(eil⃗mz⃗)

+ (<∇f(⃗z))=z⃗

particularly, if z⃗0 is a critical point of f (∇f(z⃗0) = 0⃗), then we have

=f(z⃗0) = r⃗

D2(eil⃗1z⃗0)
...

D2(eil⃗mz⃗0)





Related research

SU(n)-invariants
Theorem (Ge-W.)
The SU(n)-invariants of torus knot T(p, q) has a cyclotomic
expansion with p and N small.

Relative quantum invariants
in preparation
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Hyperbolic Gluing Equations

We computed the potential function of Ks as

V(s, x, y, z, l,m, n) = lim
r→∞

Vr(s, x, y, z) + F(l,m, n)

There are some dilogarithm function Li2 terms in
V(s, x, y, z, l,m, n).
We define

x′′z′((1 − w′′)y + w′′)

x′′z′

x′′z′w′′

x′′

0
1

1 − w′′2

where s±, l± come from the algebra of continued fractions.
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